项目名称: NAC基因调控柽柳耐盐分子机理研究

项目编号: No.31270703

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 农业科学

项目作者: 王玉成

作者单位: 东北林业大学

项目金额: 83万元

中文摘要: NNAC为植物特有的转录调控因子,参与了植物生长发育,多种防御反应及信号传导等多种重要生理过程,在植物抗逆过程中起重要作用。本项目在鉴定了两条有强耐盐能力的柽柳NAC基因的基础上,对它们进行三个层次的研究,即:其上游调控因子和信号通路、NAC的转录调控、其所调控的下游靶基因,系统揭示其响应高盐胁迫的分子机理。分离NAC启动子,通过构建启动子系列缺失载体来鉴定响应逆境胁迫的顺式元件,以这些元件为基础,利用酵母单杂交鉴定NAC上游调控因子。利用染色质免疫共沉(CHIP)、EMSA等技术研究NAC识别的motif,用免疫共沉淀研究其互作的蛋白。将NAC基因转入柽柳中,使之过表达和抑制表达,并利用高通量测序技术,建立它们的转录组,通过比较NAC过表达、抑制表达柽柳间的基因表达差异,研究NAC所调控的下游靶基因。进而阐明NAC基因调控柽柳耐盐的分子机理,进而为林木抗性分子育种提供依据。

中文关键词: 刚毛柽柳;NAC转录因子;盐胁迫;转录调控;

英文摘要: NAC is a transcription factor family specific to plants, which is involved in plant development, defence and signal transduction; therefore, it plays an important role in stress tolerance of plants. Based on the fundation of cloning of 2 NAC genes from Tamarix hispida, these two NAC genes will be studied on three levels, namely: the upstrem regulators and signal transduction pathway, transcriptional regulation and activation, and the down-stream target genes. The promoter of NAC genes is cloned firstly,and the cis-elements involved in stress responsive will be identified by analyzing the activities of serial deletion mutants of promoters. Based on the identified cis-elements, yeast one hybrid is employed for investigation of the upstream regulators and signal transdcution pathway of NAC genes. Chromatin Immunoprecipitation (ChIP) and EMSA is employed in studying the motifs binded by NAC. The partner of NAC genes is investigated by using Co-Immunoprecipitation. The NAC genes are transformed into T. hispida generating the overexpression and inhibit expression transgenic T. hispida. The transcriptoms of these transgenic and WT T. hispida are bulit using the high throughput sequencing method. The target genes of NAC will be determined by comparising the differentially expressed genes between overexpression and inhib

英文关键词: Tamarix hispida;NAC transcription factor;salt stress;transcriptional regulation;

成为VIP会员查看完整内容
0

相关内容

ICLR2022 | OntoProtein:融入基因本体知识的蛋白质预训练
专知会员服务
28+阅读 · 2022年2月20日
【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
36+阅读 · 2021年11月1日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
133+阅读 · 2021年9月20日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
人工智能预测RNA和DNA结合位点,以加速药物发现
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
19+阅读 · 2021年6月15日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员