The problems of matrix spectral factorization and J-spectral factorization appear to be important for practical use in many MIMO control systems. We propose a numerical algorithm for J-spectral factorization which extends Janashia-Lagvilava matrix spectral factorization method to the indefinite case. The algorithm can be applied to matrices that have constant signatures for all leading principle submatrices. A numerical example is presented for illustrative purposes.


翻译:矩阵光谱因子化和J光谱因子化问题对于许多MIMO控制系统的实际使用似乎十分重要。我们建议对J光谱因子化采用数字算法,将Janashia-Lagvilava矩阵光谱因子化方法扩大到无限期的情况。这种算法可以适用于对所有主要原则次矩阵具有持续签名的矩阵。为说明目的,举了一个数字例子。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
在清华入党的那些事
清华大学研究生教育
14+阅读 · 2019年3月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年11月3日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年5月11日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
在清华入党的那些事
清华大学研究生教育
14+阅读 · 2019年3月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年11月3日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员