We consider a learning-augmented framework for NP-hard permutation problems. The algorithm has access to predictions telling, given a pair $u,v$ of elements, whether $u$ is before $v$ or not in an optimal solution. Building on the work of Braverman and Mossel (SODA 2008), we show that for a class of optimization problems including scheduling, network design and other graph permutation problems, these predictions allow to solve them in polynomial time with high probability, provided that predictions are true with probability at least $1/2+\epsilon$. Moreover, this can be achieved with a parsimonious access to the predictions.
翻译:暂无翻译