Image classification is an important task in various machine learning applications. In recent years, a number of classification methods based on quantum machine learning and different quantum image encoding techniques have been proposed. In this paper, we study the effect of three different quantum image encoding approaches on the performance of a convolution-inspired hybrid quantum-classical image classification algorithm called quanvolutional neural network (QNN). We furthermore examine the effect of variational - i.e. trainable - quantum circuits on the classification results. Our experiments indicate that some image encodings are better suited for variational circuits. However, our experiments show as well that there is not one best image encoding, but that the choice of the encoding depends on the specific constraints of the application.
翻译:图像分类是各种机器学习应用中的一项重要任务。 近些年来, 提出了一些基于量子机器学习和不同量子图像编码技术的分类方法。 在本文中, 我们研究了三种不同的量子图像编码方法对由进化驱动的混合量子古典图像分类算法(QNN)的性能的影响。 我们进一步研究了变异- 即可训练- 量子电路对分类结果的影响。 我们的实验表明, 一些图像编码更适合变异电路。 但是, 我们的实验也表明, 没有一种最佳的图像编码, 但编码的选择取决于应用的具体限制。