Univariate visualizations like histograms, rug plots, or box plots provide concise visual summaries of distributions. However, each individual visualization may fail to robustly distinguish important features of a distribution, or provide sufficient information for all of the relevant tasks involved in summarizing univariate data. One solution is to juxtapose or superimpose multiple univariate visualizations in the same chart, as in Allen et al.'s "raincloud plots." In this paper I examine the design space of raincloud plots, and, through a series of simulation studies, explore designs where the component visualizations mutually "defend" against situations where important distribution features are missed or trivial features are given undue prominence. I suggest a class of "defensive" raincloud plot designs that provide good mutual coverage for surfacing distributional features of interest.
翻译:Teru Teru Bōzu: 防御性雨云图
单变量的可视化图像如直方图、毡垫图和箱形图可以提供对分布的简洁视觉总结。但是,每个单独的可视化图像可能无法稳健地区分分布的重要特征,或为概括单变量数据的所有相关任务提供足够的信息。一种解决方案是将多个单变量可视化图像并置或叠加在同一张图表中,如Allen等人的“雨云图”。在本文中,我研究了雨云图的设计空间,并通过一系列模拟研究,探索了在重要分布特征被忽略或不重要的特征被赋予过度显着性的情况下,各组分可视化图像彼此“防御”的设计。我提出了一类“防御型”雨云图设计,可提供良好的互相覆盖,以展现感兴趣的分布特征。