Large-scale text-to-image diffusion models have been a revolutionary milestone in the evolution of generative AI and multimodal technology, allowing extraordinary image generation based on natural-language text prompts. However, the issue of lacking controllability of such models restricts their practical applicability for real-life content creation, for which attention has been focused on leveraging a reference image to control text-to-image synthesis. Due to the close correlation between the reference image and the generated image, this problem can also be regarded as the task of manipulating (or editing) the reference image as per the text, namely text-driven image-to-image translation. This paper contributes a novel, concise, and efficient approach that adapts the pre-trained large-scale text-to-image (T2I) diffusion model to the image-to-image (I2I) paradigm in a plug-and-play manner, realizing high-quality and versatile text-driven I2I translation without any model training, model fine-tuning, or online optimization process. To guide T2I generation with a reference image, we propose to model diverse guiding factors with correspondingly different frequency bands of diffusion features in the DCT spectral space, and accordingly devise a novel frequency band substitution layer that dynamically substitutes a certain DCT frequency band of the diffusion features with the corresponding counterpart of the reference image along the reverse sampling process. We demonstrate that our method flexibly enables highly controllable text-driven I2I translation both in the guiding factor and guiding intensity of the reference image, simply by tuning the type and bandwidth of the substituted frequency band, respectively. Extensive qualitative and quantitative experiments verify the superiority of our approach over related methods in I2I translation visual quality, versatility, and controllability.
翻译:暂无翻译