A tandem duplication denotes the process of inserting a copy of a segment of DNA adjacent to its original position. More formally, a tandem duplication can be thought of as an operation that converts a string $S = AXB$ into a string $T = AXXB.$ As they appear to be involved in genetic disorders, tandem duplications are widely studied in computational biology. Also, tandem duplication mechanisms have been recently studied in different contexts, from formal languages, to information theory, to error-correcting codes for DNA storage systems. The problem of determining the complexity of computing the tandem duplication distance between two given strings was proposed by [Leupold et al., 2004] and, very recently, it was shown to be NP-hard for the case of unbounded alphabets [Lafond et al., STACS2020]. In this paper, we significantly improve this result and show that the tandem duplication distance problem is NP-hard already for the case of strings over an alphabet of size $\leq 5.$ We also study some special classes of strings were it is possible to give linear time solutions to the existence problem: given strings $S$ and $T$ over the same alphabet, decide whether there exists a sequence of duplications converting $S$ into $T$. A polynomial time algorithm that solves the existence problem was only known for the case of the binary alphabet.


翻译:同步重复是指插入DNA部分与其原始位置相邻的复制部分的过程。 更正式地说, 同步重复可被视为将字符串 $S = AXB = AXXB 美元转换成字符串 $T = AXXB 美元的行动。 由于它们似乎涉及基因紊乱,因此在计算生物学中广泛研究同步重叠。 此外, 最近在不同的背景下,从正式语言到信息理论,对同步重复机制进行了研究,到DNA储存系统的纠正错误代码。 确定计算两个特定字符串之间同步重复距离的复杂性的问题,是由[Leupold 等人, 2004] 提出的,而且最近,对于无限制的字母[Lafond et al.,STACS/2020] 的情况,它被证明是硬硬的。 在本文中,我们大大改进了这一结果,并表明,从字符串到DNA储存系统大小为$5. 5 美元 的校正的校正问题已经很难解决了。 我们还研究某些特殊类型的字符串的问题, 是因为有可能给存在的时间问题提供直线性解决办法, 美元和美元的公式是否已经存在。

0
下载
关闭预览

相关内容

Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.
abc.xyz/
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员