Block encoding lies at the core of many existing quantum algorithms. Meanwhile, efficient and explicit block encodings of dense operators are commonly acknowledged as a challenging problem. This paper presents a comprehensive study of the block encoding of a rich family of dense operators: the pseudo-differential operators (PDOs). First, a block encoding scheme for generic PDOs is developed. Then we propose a more efficient scheme for PDOs with a separable structure. Finally, we demonstrate an explicit and efficient block encoding algorithm for PDOs with a dimension-wise fully separable structure. Complexity analysis is provided for all block encoding algorithms presented. The application of theoretical results is illustrated with worked examples, including the representation of variable coefficient elliptic operators and the computation of the inverse of elliptic operators without invoking quantum linear system algorithms (QLSAs).
翻译:暂无翻译