This paper describes our champion solution for the CVPR2022 Generic Event Boundary Captioning (GEBC) competition. GEBC requires the captioning model to have a comprehension of instantaneous status changes around the given video boundary, which makes it much more challenging than conventional video captioning task. In this paper, a Dual-Stream Transformer with improvements on both video content encoding and captions generation is proposed: (1) We utilize three pre-trained models to extract the video features from different granularities. Moreover, we exploit the types of boundary as hints to help the model generate captions. (2) We particularly design an model, termed as Dual-Stream Transformer, to learn discriminative representations for boundary captioning. (3) Towards generating content-relevant and human-like captions, we improve the description quality by designing a word-level ensemble strategy. The promising results on the GEBC test split demonstrate the efficacy of our proposed model.
翻译:本文介绍了我们在CVPR2022通用事件边界字幕生成(GEBC)比赛中的冠军解决方案。GEBC要求字幕生成模型具有对给定视频边界周围瞬时状态变化的理解,这使得它比传统视频字幕生成任务更具挑战性。在这篇论文中,我们提出了一个双流transformer模型,改进了视频内容编码和字幕生成方面的性能:(1)我们利用三种预训练模型从不同的粒度提取视频特征。此外,我们利用边界类型作为提示来帮助模型生成字幕。(2)我们特别设计了一种名为双流transformer的模型,用于学习边界字幕生成的有区别的表示。(3)为了生成与内容相关的人类般的字幕,我们通过设计一个单词级集成策略来提高描述质量。在GEBC测试集上取得的良好结果表明了我们提出的模型的有效性。