Denavit and Hartenberg based methods as Cardan, Fick and Euler angles describe the position and orientation of an end-effector in Three Dimensional (3D) space. However, the generation of unrealistic human posture in joint space constitutes the weak point to these methods because they impose a well-defined rotations order. A method to handle the transformation homogeneous performance uses the dual quaternions. Quaternions have proven themselves in many fields as providing a computational efficient method to represent a rotation, and yet, they can not deal with the translations in 3D-space. The dual numbers can extend quaternions to dual quaternions. This paper exploits dual quaternions theory to provide a fast and accurate solution to the forward, inverse kinematics and recursive Newton-Euler dynamics algorithm for 7 Degree of Freedom (DOF) human lower limb in 3D-space.
翻译:Denavit 和 Hartenberg 以卡丹、Fick 和 Euler 角度为基础的方法描述三个维度(3D)空间的终端效应的位置和方向。然而,在共同空间产生不切实际的人类态势是这些方法的薄弱点,因为它们实行一个明确界定的旋转顺序。一种处理同质性能转换的方法使用双四元。在很多领域,量子证明它们提供了一种计算高效的方法来代表旋转,然而,它们无法处理3D-空间的翻译。双倍数可以将四元扩大至双四元。本论文利用双倍四元理论为3D-空间内7度自由度人类下肢的反动和回动纽顿-Euler动态算法提供快速和准确的向前方、反动和回动的纽顿-Eurer动态算法。