For graph learning tasks, many existing methods utilize a message-passing mechanism where vertex features are updated iteratively by aggregation of neighbor information. This strategy provides an efficient means for graph features extraction, but obtained features after many iterations might contain too much information from other vertices, and tend to be similar to each other. This makes their representations less expressive. Learning graphs using paths, on the other hand, can be less adversely affected by this problem because it does not involve all vertex neighbors. However, most of them can only compare paths with the same length, which might engender information loss. To resolve this difficulty, we propose a new Graph Kernel based on a Longest Common Subsequence (LCS) similarity. Moreover, we found that the widely-used R-convolution framework is unsuitable for path-based Graph Kernel because a huge number of comparisons between dissimilar paths might deteriorate graph distances calculation. Therefore, we propose a novel metric space by exploiting the proposed LCS-based similarity, and compute a new Wasserstein-based graph distance in this metric space, which emphasizes more the comparison between similar paths. Furthermore, to reduce the computational cost, we propose an adjacent point merging operation to sparsify point clouds in the metric space.


翻译:对于图形学习任务,许多现有方法都使用一个信息传递机制,让顶点特征通过相邻信息汇总来迭接更新。这一战略为图形特征提取提供了有效的手段,但在许多迭代后获得的特征可能包含来自其他脊椎的信息过多,而且往往彼此相似。这使得其表达方式不那么直观。另一方面,使用路径的学习图形可能受到这一问题的影响较小,因为它不涉及所有顶点邻居。然而,其中多数方法只能将路径与同一长度比较,从而可能造成信息损失。为了解决这一困难,我们提议在“长期共同后序”(LCS)相似之处的基础上建立一个新的“内核图 ” 。 此外,我们发现,广泛使用的R- 革命框架不适合基于路径的“ 图形内核”, 因为不同路径之间的大量比较可能会降低图形距离的计算。 因此,我们提出一个新的计量空间, 办法是利用基于 LCS 的相近点的路径, 并计算出一个新的基于瓦瑟斯坦 图形的距离, 从而更加强调在相邻的轨道上进行对比。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员