The rise of graph representation learning as the primary solution for many different network science tasks led to a surge of interest in the fairness of this family of methods. Link prediction, in particular, has a substantial social impact. However, link prediction algorithms tend to increase the segregation in social networks by disfavoring the links between individuals in specific demographic groups. This paper proposes a novel way to enforce fairness on graph neural networks with a fine-tuning strategy. We Drop the unfair Edges and, simultaneously, we Adapt the model's parameters to those modifications, DEA in short. We introduce two covariance-based constraints designed explicitly for the link prediction task. We use these constraints to guide the optimization process responsible for learning the new "fair" adjacency matrix. One novelty of DEA is that we can use a discrete yet learnable adjacency matrix in our fine-tuning. We demonstrate the effectiveness of our approach on five real-world datasets and show that we can improve both the accuracy and the fairness of the link prediction tasks. In addition, we present an in-depth ablation study demonstrating that our training algorithm for the adjacency matrix can be used to improve link prediction performances during training. Finally, we compute the relevance of each component of our framework to show that the combination of both the constraints and the training of the adjacency matrix leads to optimal performances.


翻译:作为许多不同网络科学任务的首要解决方案,图表代表学习的崛起成为了许多不同网络科学任务的主要解决方案,导致人们对这一方法的公平性的兴趣激增。特别是,链接预测具有巨大的社会影响。然而,链接预测算法往往会通过不赞同特定人口群体中个人之间的联系而增加社会网络的隔离。本文提出了一种新颖的方法,用微调战略在图形神经网络上实现公平。我们放下不公平的边缘,同时,我们将模型的参数与这些修改相适应,简而言之,DEA。我们引入了两种基于共变的限制因素,明确为连接预测任务设计。我们利用这些限制因素来指导负责学习新的“公平”相邻关系矩阵的优化进程。DEA的一个新颖之处是,我们可以使用一个不相干但又可以学习的匹配矩阵,在微调战略中,我们展示了我们在五个真实世界数据集上的做法的有效性,并表明我们能够提高模型的准确性和公正性。此外,我们提出一个深入的基于差异预测的制约因素研究,表明我们用于学习新的“公平”相邻关系矩阵的训练算法,我们最后的模型可以用来改进我们业绩的组合框架。

0
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员