Network-on-Chip (NoC) congestion builds up during heavy traffic load and cripples the system performance by stalling the cores. Moreover, congestion leads to wasted link bandwidth due to blocked buffers and bouncing packets. Existing approaches throttle the cores after congestion is detected, reducing efficiency and wasting line bandwidth unnecessarily. In contrast, we propose a lightweight machine learning-based technique that helps predict congestion in the network. Specifically, our proposed technique collects the features related to traffic at each destination. Then, it labels the features using a novel time reversal approach. The labeled data is used to design a low overhead and an explainable decision tree model used at runtime congestion control. Experimental evaluations with synthetic and real traffic on industrial 6$\times$6 NoC show that the proposed approach increases fairness and memory read bandwidth by up to 114\% with respect to existing congestion control technique while incurring less than 0.01\% of overhead.


翻译:电网-电网-电网(NOC)堵塞在沉重的交通载荷中积聚起来,使系统性能因堆芯停顿而瘫痪。此外,堵塞还导致连接带宽因缓冲阻塞和弹簧袋而浪费。现有的办法在堵塞检测出来后会加速岩芯,降低效率和浪费线带宽。相反,我们提议采用轻量机械学习技术,帮助预测网络的堵塞。具体地说,我们提议的技术收集了每个目的地交通的特征。然后,它用新的时间逆转方法标记了这些特征。标签数据用于设计低间接费用和可解释的决定树模型,用于运行时阻塞控制。对工业合成和实时交通的实验性评价6美元6诺氏显示,拟议的办法提高了公平性和记忆读带宽度,在现有的阻塞控制技术方面,增加了114<unk>,同时减少了0.01美元的管理费。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员