Over the past decade, convolutional neural networks (CNNs) have become the driving force of an ever-increasing set of applications, achieving state-of-the-art performance. Most of the modern CNN architectures are composed of many convolutional and fully connected layers and typically require thousands or millions of parameters to learn. CNNs have also been effective in the detection of Event-Related Potentials from electroencephalogram (EEG) signals, notably the P300 component which is frequently employed in Brain-Computer Interfaces (BCIs). However, for this task, the increase in detection rates compared to approaches based on human-engineered features has not been as impressive as in other areas and might not justify such a large number of parameters. In this paper, we study the performances of existing CNN architectures with diverse complexities for single-trial within-subject and cross-subject P300 detection on four different datasets. We also proposed SepConv1D, a very simple CNN architecture consisting of a single depthwise separable 1D convolutional layer followed by a fully connected Sigmoid classification neuron. We found that with as few as four filters in its convolutional layer and a small overall number of parameters, SepConv1D obtained competitive performances in the four datasets. We believe this may represent an important step towards building simpler, cheaper, faster, and more portable BCIs.


翻译:在过去的十年中,神经神经网络(CNNs)已成为不断增长的一套应用的动力,实现了最先进的性能。现代CNN结构大多由许多连通层组成,通常需要数千或数百万参数才能学习。CNN还有效地探测了电子脑图信号产生的与事件有关的潜力,特别是脑计算机界面中经常使用的P300组件。然而,对于这项任务来说,与基于人造特征的方法相比,探测率的提高并没有像其他领域那样令人印象深刻,而且可能无法证明如此众多的参数。在本论文中,我们研究了现有CNN结构的性能,在四个不同的数据集中,对单审判和交叉P300探测具有各种复杂性。我们还提议Conv1D,这是一个非常简单的CNN结构,由单一的深度、可移动的1D型神经层组成,然后是完全相连的Sigmillicolal分类神经层。我们发现,在四个阶段中,只有很少一个具有竞争力的B级分级,我们相信这个阶段中的重要的分级层次。

0
下载
关闭预览

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员