The paper presents a strategy to construct an incremental Singular Value Decomposition (SVD) for time-evolving, spatially 3D discrete data sets. A low memory access procedure for reducing and deploying the snapshot data is presented. Considered examples refer to Computational Fluid Dynamic (CFD) results extracted from unsteady flow simulations, which are computed spatially parallel using domain decomposition strategies. The framework addresses state of the art PDE-solvers dedicated to practical applications. Although the approach is applied to technical flows, it is applicable in similar applications under the umbrella of Computational Science and Engineering (CSE). To this end, we introduce a bunch matrix that allows the aggregation of multiple time steps and SVD updates, and significantly increases the computational efficiency. The incremental SVD strategy is initially verified and validated by simulating the 2D laminar single-phase flow around a circular cylinder. Subsequent studies analyze the proposed strategy for a 2D submerged hydrofoil located in turbulent two-phase flows. Attention is directed to the accuracy of the SVD-based reconstruction based on local and global flow quantities, their physical realizability, the independence of the domain partitioning, and related implementation aspects. Moreover, the influence of lower and (adaptive) upper construction rank thresholds on both the effort and the accuracy are assessed. The incremental SVD process is applied to analyze and compress the predicted flow field around a Kriso container ship in harmonic head waves at Fn = 0.26 and ReL = 1.4E+07. With a numerical overhead of O(10%), the snapshot matrix of size O(R10E+08 x 10E+04) computed on approximately 3000 processors can be incrementally compressed by O(95%). The storage reduction is accompanied by errors in integral force and local wave elevation quantities of O(1E-02%).


翻译:本文提出了一个战略, 用于为时间变化、 空间 3D 离散数据集构建递增 Singal 值分解( SVD) 的递增 Singal 值分解( SVD) 。 提供了一个用于减少和部署快照数据的低存储存取程序。 考虑的例子是指从不稳定流模拟中提取的计算液流动态( CFD), 该模拟利用域分解战略进行空间平行计算。 框架针对用于实际应用的艺术 PDE 解析( SVD) 状态。 虽然该方法适用于技术流, 但也适用于Computurational 科学与工程( CSEE) 伞下的类似应用。 为此, 我们引入了一组矩阵矩阵, 允许聚合多时间步骤和 SVD 更新, 并大大提高计算效率。 递增 SVD 战略最初通过模拟圆柱形圆柱形 2D 的单级流流流。 随后的研究表明, 2D 淹没的流流流流流流流流流流流流流战略可以持续到 。 以当地和全球 流流流流流流流流值 的 Slev 递递递递递递递递递递减 递减 值 值 递递递增 的OO. 0L 的递增 的递增过程的精确度 。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员