This paper derives the CUR-type factorization for tensors in the Tucker format based on a new variant of the discrete empirical interpolation method known as L-DEIM. This novel sampling technique allows us to construct an efficient algorithm for computing the structure-preserving decomposition, which significantly reduces the computational cost. For large-scale datasets, we incorporate the random sampling technique with the L-DEIM procedure to further improve efficiency. Moreover, we propose randomized algorithms for computing a hybrid decomposition, which yield interpretable factorization and provide a smaller approximation error than the tensor CUR factorization. We provide comprehensive analysis of probabilistic errors associated with our proposed algorithms, and present numerical results that demonstrate the effectiveness of our methods.


翻译:本文基于离散经验插值方法的新变体L-DEIM,导出了Tucker格式张量的CUR型分解。这种新颖的采样技术使我们能够构建一个有效的算法来计算结构保持分解,从而显著降低了计算成本。对于大规模数据集,我们将随机采样技术与L-DEIM过程结合起来,以进一步提高效率。此外,我们提出了计算混合分解的随机算法,这些算法可以产生可解释的分解,并提供比张量CUR分解更小的近似误差。我们提供了与我们提出的算法相关的概率误差的全面分析,并呈现了证明我们方法有效性的数值结果。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2021年8月20日
专知会员服务
50+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员