This paper addresses the following research question: ``can one compress a detailed 3D representation and use it directly for point cloud registration?''. Map compression of the scene can be achieved by the tensor train (TT) decomposition of the signed distance function (SDF) representation. It regulates the amount of data reduced by the so-called TT-ranks. Using this representation we have proposed an algorithm, the TT-SDF2PC, that is capable of directly registering a PC to the compressed SDF by making use of efficient calculations of its derivatives in the TT domain, saving computations and memory. We compare TT-SDF2PC with SOTA local and global registration methods in a synthetic dataset and a real dataset and show on par performance while requiring significantly less resources.
翻译:本文回答以下研究问题:``一种详细的3D表示是否可以压缩并直接用于点云配准?''。场景的地图压缩可以通过有符号距离函数(SDF)表示的张量列车(TT)分解来实现。它通过所谓的TT秩调整所减少的数据量。使用这种表示方法,我们提出了一种算法,即TT-SDF2PC,它能够直接通过在TT域内高效地计算其导数来将PC与压缩的SDF配准,节省计算和内存。我们在合成数据集和真实数据集上将TT-SDF2PC与SOTA本地和全局配准方法进行了比较,并显示它们有着相当的性能,但需要更少的资源。