The detection and classification of vehicles on the road is a crucial task for traffic monitoring. Usually, Computer Vision (CV) algorithms dominate the task of vehicle classification on the road, but CV methodologies might suffer in poor lighting conditions and require greater amounts of computational power. Additionally, there is a privacy concern with installing cameras in sensitive and secure areas. In contrast, acoustic traffic monitoring is cost-effective, and can provide greater accuracy, particularly in low lighting conditions and in places where cameras cannot be installed. In this paper, we consider the task of acoustic vehicle sub-type classification, where we classify acoustic signals into 4 classes: car, truck, bike, and no vehicle. We experimented with Mel spectrograms, MFCC and GFCC as features and performed data pre-processing to train a simple, well optimized CNN that performs well at the task. When used with MFCC as features and careful data pre-processing, our proposed methodology improves upon the established state-of-the-art baseline on the IDMT Traffic dataset with an accuracy of 98.95%.


翻译:对公路上车辆的探测和分类是交通监测的一项关键任务,通常,计算机视像算法在公路上控制车辆分类任务,但CV方法在照明条件差的情况下可能受到影响,需要更大的计算能力;此外,在敏感和安全地区安装照相机是隐私问题;相反,音响交通监测具有成本效益,可以提供更大的准确性,特别是在低照明条件下和无法安装照相机的地方;在本文件中,我们考虑了声学车辆分型分类的任务,我们把声学信号分为4类:汽车、卡车、自行车和没有车辆;我们用Mel光谱、MFCC和GFCC作为特征进行了试验,并进行了数据预处理,以训练一个简单、优化的CNN,在执行任务时表现良好;在使用MFCC作为特点和仔细的数据预处理时,我们提出的方法将改进了IDMT交通数据集的既定最新基线,精确率为98.95%。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员