While machine learning has become pervasive in as diversified fields as industry, healthcare, social networks, privacy concerns regarding the training data have gained a critical importance. In settings where several parties wish to collaboratively train a common model without jeopardizing their sensitive data, the need for a private training protocol is particularly stringent and implies to protect the data against both the model's end-users and the actors of the training phase. Differential privacy (DP) and cryptographic primitives are complementary popular countermeasures against privacy attacks. Among these cryptographic primitives, fully homomorphic encryption (FHE) offers ciphertext malleability at the cost of time-consuming operations in the homomorphic domain. In this paper, we design SHIELD, a probabilistic approximation algorithm for the argmax operator which is both fast when homomorphically executed and whose inaccuracy is used as a feature to ensure DP guarantees. Even if SHIELD could have other applications, we here focus on one setting and seamlessly integrate it in the SPEED collaborative training framework from "SPEED: Secure, PrivatE, and Efficient Deep learning" (Grivet S\'ebert et al., 2021) to improve its computational efficiency. After thoroughly describing the FHE implementation of our algorithm and its DP analysis, we present experimental results. To the best of our knowledge, it is the first work in which relaxing the accuracy of an homomorphic calculation is constructively usable as a degree of freedom to achieve better FHE performances.


翻译:尽管机器学习已经在诸如工业、医疗保健、社交网络等各个领域得到广泛应用,但有关训练数据隐私保护的问题也变得至关重要。在多方希望协同训练共同模型而不危及其敏感数据的情况下,需要私有训练协议,以保护数据免受模型的最终用户和训练阶段的行为者的攻击。差分隐私(DP)和密码原语是对抗隐私攻击的两种流行的补充措施。在这些密码原语中,全同态加密(FHE)提供密文的可塑性,但需要在同态域中进行耗时的操作。在本文中,我们设计了SHIELD,一个概率近似算法,用于argmax运算,该算法在同态执行时既快速又其不准确的特性作为功能,以确保DP保障。尽管SHIELD可能有其他应用,在这里,我们专注于一个场景,并将其无缝地集成到“SPEED: Secure, PrivatE, and Efficient Deep learning”(Grivet S\'ebert等,2021)的协作训练框架中,以提高其计算效率。在彻底描述了我们的算法的FHE实现及其DP分析之后,我们介绍了实验结果。据我们所知,这是第一次将同态计算的精度放宽作为一个自由度来实现更好的FHE性能。

0
下载
关闭预览

相关内容

近期必读的六篇 ICML 2020【因果推理】相关论文
专知会员服务
87+阅读 · 2020年9月8日
模型攻击:鲁棒性联邦学习研究的最新进展
机器之心
34+阅读 · 2020年6月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
近期必读的六篇 ICML 2020【因果推理】相关论文
专知会员服务
87+阅读 · 2020年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员