This paper analyzes a full discretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. The discretization uses the Euler scheme for temporal discretization and the finite element method for spatial discretization. A key contribution of this work is the introduction of a novel stability estimate for a discrete stochastic convolution, which plays a crucial role in establishing pathwise uniform convergence estimates for fully discrete approximations of nonlinear stochastic parabolic equations. By using this stability estimate in conjunction with the discrete stochastic maximal $L^p$-regularity estimate, the study derives a pathwise uniform convergence rate that encompasses general general spatial $L^q$-norms. Moreover, the theoretical convergence rate is verified by numerical experiments.
翻译:暂无翻译