We consider the problem of spatial path planning. In contrast to the classical solutions which optimize a new plan from scratch and assume access to the full map with ground truth obstacle locations, we learn a planner from the data in a differentiable manner that allows us to leverage statistical regularities from past data. We propose Spatial Planning Transformers (SPT), which given an obstacle map learns to generate actions by planning over long-range spatial dependencies, unlike prior data-driven planners that propagate information locally via convolutional structure in an iterative manner. In the setting where the ground truth map is not known to the agent, we leverage pre-trained SPTs in an end-to-end framework that has the structure of mapper and planner built into it which allows seamless generalization to out-of-distribution maps and goals. SPTs outperform prior state-of-the-art differentiable planners across all the setups for both manipulation and navigation tasks, leading to an absolute improvement of 7-19%.
翻译:我们考虑空间路径规划问题。 与从零开始优化新计划并以地面真相障碍位置获取完整地图的传统解决方案相比,我们以不同的方式从数据中学习了一位规划者,从而使我们能够利用过去数据的统计规律性。 我们提议了空间规划变异器(SPT),该变异器提供了障碍图,通过规划远程空间依赖而学会通过规划产生行动,不同于以往的数据驱动规划者,前者以迭接方式通过动态结构在当地传播信息。在地面真相图不为代理人所知的环境下,我们利用经过预先训练的小组委员会在终端到终端的框架中发挥作用,这一框架将地图和规划师的结构建在其中,以便无缝地概括到分布地图和目标之外。 防范小组委员会在操纵和导航任务方面超越了以往所有设置中最先进的不同规划者,导致7-19 %的绝对改善。