In inverse optimization problems, the goal is to modify the costs in an underlying optimization problem in such a way that a given solution becomes optimal, while the difference between the new and the original cost functions, called the deviation vector, is minimized with respect to some objective function. The $\ell_1$- and $\ell_\infty$-norms are standard objectives used to measure the size of the deviation. Minimizing the $\ell_1$-norm is a natural way of keeping the total change of the cost function low, while the $\ell_\infty$-norm achieves the same goal coordinate-wise. Nevertheless, none of these objectives is suitable to provide a balanced or fair change of the costs. In this paper, we initiate the study of a new objective that measures the difference between the largest and the smallest weighted coordinates of the deviation vector, called the weighted span. We give a min-max characterization for the minimum weighted span of a feasible deviation vector, and provide a Newton-type algorithm for finding one that runs in strongly polynomial time in the case of unit weights.


翻译:反优化问题,目标是在一个基本优化问题中修改成本,使特定解决方案变得最佳,同时将新功能和原始成本功能(称为偏向矢量)之间的差别在某种客观功能中最小化。$_1美元和$\ell_<unk> infty$-norms是用于测量偏差大小的标准目标。最小化$_1美元-norm是保持成本函数总体变化低的自然方式,而美元-infty$-norm则在协调方面达到同一目标。然而,这些目标中没有一个适合提供平衡或公平的成本变化。在本文件中,我们开始研究一个新的目标,即测量偏移矢量的最大和最小加权坐标之间的差别,称为加权宽度。我们给一个可能的偏移矢量最小的加权宽度,并为在单位重量的情况下找到一个在强烈聚积时间内运行的偏移矢量计算法提供牛顿型算法。</s>

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员