The reconstruction of missing information in epidemic spreading on contact networks can be essential in the prevention and containment strategies. The identification and warning of infectious but asymptomatic individuals (i.e., contact tracing), the well-known patient-zero problem, or the inference of the infectivity values in structured populations are examples of significant epidemic inference problems. As the number of possible epidemic cascades grows exponentially with the number of individuals involved and only an almost negligible subset of them is compatible with the observations (e.g., medical tests), epidemic inference in contact networks poses incredible computational challenges. We present a new generative neural networks framework that learns to generate the most probable infection cascades compatible with observations. The proposed method achieves better (in some cases, significantly better) or comparable results with existing methods in all problems considered both in synthetic and real contact networks. Given its generality, clear Bayesian and variational nature, the presented framework paves the way to solve fundamental inference epidemic problems with high precision in small and medium-sized real case scenarios such as the spread of infections in workplaces and hospitals.
翻译:在接触网络上传播流行病的缺失信息重建对于预防和遏制战略至关重要;查明和警告传染性但无症状的个人(即追踪接触)、众所周知的病人零问题或结构化人口感染值的推论是重大流行病推论问题的例子;由于可能的流行病级联随着所涉人数的增加而成倍增长,而且其中只有几乎微不足道的一小部分与观测结果(例如医学测试)相容,接触网络中的流行病推论带来了令人难以置信的计算挑战;我们提出了一个新的基因神经网络框架,以学会产生与观察相容的最可能的感染级联;拟议的方法在合成和真实联系网络中考虑的所有问题中,都取得了更好的(在某些情况下,明显更好)或可比的结果;鉴于其一般性、明确的巴耶斯和变异性质,所提出的框架为在中小实际病例中,例如工作场所和医院感染的蔓延,解决基本的推论性流行病问题铺平了道路。