The proliferation of deepfake videos, synthetic media produced through advanced Artificial Intelligence techniques has raised significant concerns across various sectors, encompassing realms such as politics, entertainment, and security. In response, this research introduces an innovative and streamlined model designed to classify deepfake videos generated by five distinct encoders adeptly. Our approach not only achieves state of the art performance but also optimizes computational resources. At its core, our solution employs part of a VGG19bn as a backbone to efficiently extract features, a strategy proven effective in image-related tasks. We integrate a Capsule Network coupled with a Spatial Temporal attention mechanism to bolster the model's classification capabilities while conserving resources. This combination captures intricate hierarchies among features, facilitating robust identification of deepfake attributes. Delving into the intricacies of our innovation, we introduce an existing video level fusion technique that artfully capitalizes on temporal attention mechanisms. This mechanism serves to handle concatenated feature vectors, capitalizing on the intrinsic temporal dependencies embedded within deepfake videos. By aggregating insights across frames, our model gains a holistic comprehension of video content, resulting in more precise predictions. Experimental results on an extensive benchmark dataset of deepfake videos called DFDM showcase the efficacy of our proposed method. Notably, our approach achieves up to a 4 percent improvement in accurately categorizing deepfake videos compared to baseline models, all while demanding fewer computational resources.
翻译:暂无翻译