In this paper, we present a decentralized and communication-free collision avoidance approach for multi-robot systems that accounts for both robot localization and sensing uncertainties. The approach relies on the computation of an uncertainty-aware safe region for each robot to navigate among other robots and static obstacles in the environment, under the assumption of Gaussian-distributed uncertainty. In particular, at each time step, we construct a chance-constrained buffered uncertainty-aware Voronoi cell (B-UAVC) for each robot given a specified collision probability threshold. Probabilistic collision avoidance is achieved by constraining the motion of each robot to be within its corresponding B-UAVC, i.e. the collision probability between the robots and obstacles remains below the specified threshold. The proposed approach is decentralized, communication-free, scalable with the number of robots and robust to robots' localization and sensing uncertainties. We applied the approach to single-integrator, double-integrator, differential-drive robots, and robots with general nonlinear dynamics. Extensive simulations and experiments with a team of ground vehicles, quadrotors, and heterogeneous robot teams are performed to analyze and validate the proposed approach.
翻译:在本文中,我们为多机器人系统介绍了一种分散的、无通信的避免多机器人系统碰撞的方法,该方法既考虑到机器人的本地化,又考虑到感知不确定性的不确定性;该方法依靠计算每个机器人在其他机器人之间航行的不确定而安全的区域,以及环境中的静态障碍,假设是高山分布的不确定性;特别是,在每一步上,我们为每个机器人建造一个受特定碰撞概率阈值限制的、受时间限制的缓冲的低迷性、有色人种的Voronoi细胞(B-UAVC);通过限制每个机器人在其相应的B-UAAVC内运动,即机器人和障碍之间的碰撞概率概率概率仍然低于规定的阈值,从而实现避免碰撞的概率性;拟议的方法是分散、无通信性、与机器人数量相适应、对机器人的本地化和感知和感知性不确定性具有强力的机器人。我们采用了单一集成体、双调集体、有差异驱动力的机器人和具有一般非线动态的机器人机组等方法。