We prove discrete Helly-type theorems for pseudohalfplanes, which extend recent results of Jensen, Joshi and Ray about halfplanes. Among others we show that given a family of pseudohalfplanes $\cal H$ and a set of points $P$, if every triple of pseudohalfplanes has a common point in $P$ then there exists a set of at most two points that hits every pseudohalfplane of $\cal H$. We also prove that if every triple of points of $P$ is contained in a pseudohalfplane of $\cal H$ then there are two pseudohalfplanes of $\cal H$ that cover all points of $P$. To prove our results we regard pseudohalfplane hypergraphs, define their extremal vertices and show that these behave in many ways as points on the boundary of the convex hull of a set of points. Our methods are purely combinatorial.


翻译:我们证明假半空机离散的Helly类型理论,这延长了Jensen、Joshi和Ray最近的半空机结果。其中我们显示,如果每三架假半空机有一个共同点(P美元),那么每三架假半空机就有一套最多达到两点的假半空机(P美元),每架半空机就点击每架半空机(H美元)每两点。我们还证明,如果每三分一P$(P美元)的半空机中含有1美元(H)的假半空机($),那么,就有两个半空半空机(H)的假半空机($)覆盖所有半空点(P美元)。为了证明我们的结果,我们把假半空机高图看成半空,定义其边缘的悬浮盘,并显示这些在多处的行为方式上是一组点的圆柱体船壳边界上的两点。我们的方法是纯粹的组合式。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
Arxiv
32+阅读 · 2020年3月23日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员