We prove discrete Helly-type theorems for pseudohalfplanes, which extend recent results of Jensen, Joshi and Ray about halfplanes. Among others we show that given a family of pseudohalfplanes $\cal H$ and a set of points $P$, if every triple of pseudohalfplanes has a common point in $P$ then there exists a set of at most two points that hits every pseudohalfplane of $\cal H$. We also prove that if every triple of points of $P$ is contained in a pseudohalfplane of $\cal H$ then there are two pseudohalfplanes of $\cal H$ that cover all points of $P$. To prove our results we regard pseudohalfplane hypergraphs, define their extremal vertices and show that these behave in many ways as points on the boundary of the convex hull of a set of points. Our methods are purely combinatorial.
翻译:我们证明假半空机离散的Helly类型理论,这延长了Jensen、Joshi和Ray最近的半空机结果。其中我们显示,如果每三架假半空机有一个共同点(P美元),那么每三架假半空机就有一套最多达到两点的假半空机(P美元),每架半空机就点击每架半空机(H美元)每两点。我们还证明,如果每三分一P$(P美元)的半空机中含有1美元(H)的假半空机($),那么,就有两个半空半空机(H)的假半空机($)覆盖所有半空点(P美元)。为了证明我们的结果,我们把假半空机高图看成半空,定义其边缘的悬浮盘,并显示这些在多处的行为方式上是一组点的圆柱体船壳边界上的两点。我们的方法是纯粹的组合式。