An $(m,n,a,b)$-tensor code consists of $m\times n$ matrices whose columns satisfy `$a$' parity checks and rows satisfy `$b$' parity checks (i.e., a tensor code is the tensor product of a column code and row code). Tensor codes are useful in distributed storage because a single erasure can be corrected quickly either by reading its row or column. Maximally Recoverable (MR) Tensor Codes, introduced by Gopalan et al., are tensor codes which can correct every erasure pattern that is information theoretically possible to correct. The main questions about MR Tensor Codes are characterizing which erasure patterns are correctable and obtaining explicit constructions over small fields. In this paper, we study the important special case when $a=1$, i.e., the columns satisfy a single parity check equation. We introduce the notion of higher order MDS codes (MDS$(\ell)$ codes) which is an interesting generalization of the well-known MDS codes, where $\ell$ captures the order of genericity of points in a low-dimensional space. We then prove that a tensor code with $a=1$ is MR iff the row code is an MDS$(m)$ code. We then show that MDS$(m)$ codes satisfy some weak duality. Using this characterization and duality, we prove that $(m,n,a=1,b)$-MR tensor codes require fields of size $q=\Omega_{m,b}(n^{\min\{b,m\}-1})$. Our lower bound also extends to the setting of $a>1$. We also give a deterministic polynomial time algorithm to check if a given erasure pattern is correctable by the MR tensor code (when $a=1$).


翻译:$( m, n, a, b) $- tensor 代码在分布式存储中有用, 因为单个删除可以通过读取行或列校校校校校校校校校校校校。 由 Gopalan 等人 推出的 最大可回收( MR) Tensor 代码是 Exmor 代码, 它可以纠正理论上可能纠正的信息的“ a 美元” 取消模式。 有关 MMS Tensor 代码的主要问题正在描述哪些删除模式可以校校正, 并在小域获得清晰的构造。 在本文中, 当 $=1, e. 列满足一个单一对等检查方程式时, 我们引入了更高的 MDS 代码( MDS $, liver) 代码( liver) codeal_ $( weega_ $, lix) coDRMIS codeal_ lax lax. $\ lax- modeal- codeal- m codeal codeal as a minal minal minal 1, modeal1, 然后, =x- modeal- li- m) a decude.

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
0+阅读 · 2023年1月31日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员