A space-time Trefftz discontinuous Galerkin method for the Schr\"odinger equation with piecewise-constant potential is proposed and analyzed. Following the spirit of Trefftz methods, trial and test spaces are spanned by non-polynomial complex wave functions that satisfy the Schro\"odinger equation locally on each element of the space-time mesh. This allows for a significant reduction in the number of degrees of freedom in comparison with full polynomial spaces. We prove well-posedness and stability of the method, and, for the one- and two- dimensional cases, optimal, high-order, h-convergence error estimates in a skeleton norm. Some numerical experiments validate the theoretical results presented.


翻译:根据Trefftz方法的精神,试验和试验空间由非球状复合波的函数跨越,这些函数在时空网格的每个元素上都能满足Schro\'doginger等式的局部等式。这样可以大大降低与整个多元空间相比的自由度。我们证明,这种方法具有很好的储存性和稳定性,对于一维和二维案例,在骨骼规范中,对一维和二维案例,最佳的、高度的、h-convergle错误估计是最佳的。一些数字实验证实了所提出的理论结果。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
48+阅读 · 2021年10月26日
【干货书】机器学习算法视角,249页pdf
专知会员服务
143+阅读 · 2021年10月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员