Machine learning techniques typically applied to dementia forecasting lack in their capabilities to jointly learn several tasks, handle time dependent heterogeneous data and missing values. In this paper, we propose a framework using the recently presented SSHIBA model for jointly learning different tasks on longitudinal data with missing values. The method uses Bayesian variational inference to impute missing values and combine information of several views. This way, we can combine different data-views from different time-points in a common latent space and learn the relations between each time-point while simultaneously modelling and predicting several output variables. We apply this model to predict together diagnosis, ventricle volume, and clinical scores in dementia. The results demonstrate that SSHIBA is capable of learning a good imputation of the missing values and outperforming the baselines while simultaneously predicting three different tasks.
翻译:通常用于痴呆症预测的机床学习技巧缺乏能力,无法共同学习几项任务,处理取决于时间的不同数据和缺失值。 在本文中,我们提出一个框架,使用最近推出的SSHIBA模型,共同学习关于具有缺失值的纵向数据的不同任务。 方法使用贝叶斯变异推论来估算缺失值,并综合多种观点的信息。 这样,我们可以将共同潜伏空间中不同时间点的不同数据视图结合起来,学习每个时间点之间的关系,同时建模和预测若干产出变量。 我们应用这一模型来共同预测痴呆症的诊断、通风量和临床得分。 结果显示, SSHIBA能够学习对缺失值的正确估算,并在同时预测三项不同任务时优于基线。