In this paper, we consider the Newton-Schur method in Hilbert space and obtain quadratic convergence. For the symmetric elliptic eigenvalue problem discretized by the standard finite element method and non-overlapping domain decomposition method, we use the Steklov-Poincar\'e operator to reduce the eigenvalue problem on the domain $\Omega$ into the nonlinear eigenvalue subproblem on $\Gamma$, which is the union of subdomain boundaries. We prove that the convergence rate for the Newton-Schur method is $\epsilon_{N}\leq CH^{2}(1+\ln(H/h))^{2}\epsilon^{2}$, where the constant $C$ is independent of the fine mesh size $h$ and coarse mesh size $H$, and $\epsilon_{N}$ and $\epsilon$ are errors after and before one iteration step respectively. Numerical experiments confirm our theoretical analysis.
翻译:在本文中, 我们考虑在希尔伯特空间使用牛顿- 舒尔法, 并获得二次趋同。 对于标准限量元素法和非重叠域分解法所分离的对称等离子椭圆值问题, 我们使用Steklov- Poincar\'e操作员将域内的牛顿- 舒尔法问题降为非线性电子值次问题, 美元是次界的结合。 我们证明, 牛顿- 舒尔法的趋同率是 $\ epsilon ⁇ N ⁇ leq CH ⁇ 2} (1 ⁇ (H/h) ) ⁇ 2 ⁇ ⁇ ⁇ ⁇ 2} 美元, 常数美元独立于细微的中值, 美元和粗微的中值 $H$, 美元和 $\ epslon $ 和 epsilon 美元是一次步骤之后和之前的错误。 数字实验证实了我们的理论分析。