Robots need object-level scene understanding to manipulate objects while reasoning about contact, support, and occlusion among objects. Given a pile of objects, object recognition and reconstruction can identify the boundary of object instances, giving important cues as to how the objects form and support the pile. In this work, we present a system, SafePicking, that integrates object-level mapping and learning-based motion planning to generate a motion that safely extracts occluded target objects from a pile. Planning is done by learning a deep Q-network that receives observations of predicted poses and a depth-based heightmap to output a motion trajectory, trained to maximize a safety metric reward. Our results show that the observation fusion of poses and depth-sensing gives both better performance and robustness to the model. We evaluate our methods using the YCB objects in both simulation and the real world, achieving safe object extraction from piles.
翻译:机器人需要在物体接触、 支持和隔离的推理过程中对物体进行操控, 而同时要对物体进行对象层面的场景理解。 如果有一堆物体, 物体识别和重建可以辨别物体实例的边界, 对物体如何形成和支持堆积给予重要提示 。 在这项工作中, 我们提出了一个系统“ 安全过滤 ”, 将物体级绘图和学习运动规划结合起来, 以产生一个运动动作, 从堆积中安全提取隐蔽的目标物体。 计划是通过学习一个深Q网络来完成的, 该网络接收对预测外形的观测, 并进行深度高度映射以产生运动轨迹, 受过培训以最大限度地提高安全度奖赏。 我们的结果表明, 物体和深度感测的观测组合能给模型带来更好的性能和稳健性。 我们用模拟和真实世界的YCB天体物体来评估我们的方法, 从堆积中安全物体的提取。