Component-based synthesis seeks to build programs using the APIs provided by a set of libraries. Oftentimes, these APIs have effects, which make it challenging to reason about the correctness of potential synthesis candidates. This is because changes to global state made by effectful library procedures affect how they may be composed together, yielding an intractably large search space that can confound typical enumerative synthesis techniques. If the nature of these effects are exposed as part of their specification, however, deductive synthesis approaches can be used to help guide the search for components. In this paper, we present a new specification-guided synthesis procedure that uses Hoare-style pre- and post-conditions to express fine-grained effects of potential library component candidates to drive a bi-directional synthesis search strategy. The procedure alternates between a forward search process that seeks to build larger terms given an existing context but which is otherwise unaware of the actual goal, alongside a backward search mechanism that seeks terms consistent with the desired goal but which is otherwise unaware of the context from which these terms must be synthesized. To further improve efficiency and scalability, we integrate a conflict-driven learning procedure into the synthesis algorithm that provides a semantic characterization of previously encountered unsuccessful search paths that is used to prune the space of possible candidates as synthesis proceeds. We have implemented our ideas in a tool called Cobalt and demonstrate its effectiveness on a number of challenging synthesis problems defined over OCaml libraries equipped with effectful specifications.


翻译:以构成部分为基础的合成,寻求利用一组图书馆提供的API建立程序。这些API往往具有效果,因此难以理解潜在合成候选人的正确性。这是因为,由有效的图书馆程序对全球状态所作的改变影响到它们如何组合在一起,从而产生一个难以吸引的大搜索空间,从而可以混淆典型的模拟合成技术。但是,如果这些影响的性质在其规格中暴露出来,那么可以使用扣减合成方法来帮助指导查找组成部分。在本文件中,我们提出了一个新的规格指导综合程序,使用Hoare式的规格前和后期条件来表达潜在的图书馆组成部分候选人的细微影响,以驱动双向合成搜索战略。程序将寻求在现有背景下建立较大术语,但却在其他方面不了解实际目标的前瞻性搜索进程与寻求与预期目标相符的术语的后退搜索机制一起,但又不知道这些术语必须综合的背景。为了进一步提高效率和可调和可调和性,我们将一个潜在图书馆候选人的细微影响纳入图书馆的细微影响,以表达双向综合搜索搜索战略。我们用了一个先向分析的方法将一个具有挑战性的结构,我们用了一个不稳的合成工具,我们用了一种可操作的模拟的系统。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员