We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameterized {nonlinear} elliptic partial differential equations (PDEs). CB-pMOR is designed to deal with large-scale problems for which full-order solves are not affordable in a reasonable time frame or parameters' variations induce topology changes that prevent the application of monolithic pMOR techniques. We rely on the partition-of-unity method (PUM) to devise global approximation spaces from local reduced spaces, and on Galerkin projection to compute the global state estimate. We propose a randomized data compression algorithm based on oversampling for the construction of the components' reduced spaces: the approach exploits random boundary conditions of controlled smoothness on the oversampling boundary. We further propose an adaptive residual-based enrichment algorithm that exploits global reduced-order solves on representative systems to update the local reduced spaces. We prove exponential convergence of the enrichment procedure for linear coercive problems; we further present numerical results for a two-dimensional nonlinear diffusion problem to illustrate the many features of our proposal and demonstrate its effectiveness.
翻译:我们为参数化的 {nonlinear} 椭圆偏差方程(PDEs) 提出了一个基于组成部分(CB) 的参数命令减少模型(PMOR) 配方。 CB-pMOR旨在处理在合理的时间框架内无法负担全序解决办法的大规模问题,或参数的变异导致地形变化,从而防止单体摩尔技术的应用。我们依靠“统一分配方法”从局部缩小的空间设计全球近距离空间,并依靠Galerkin预测来计算全球国家估计数。我们提议基于对构筑部件的缩小空间进行过度抽样抽样的随机数据压缩算法:在过度采样的边界上利用可控平稳的随机边界条件。我们进一步提议一种基于适应性剩余浓缩算法,利用代表系统的全球减序解决办法来更新局部缩小空间。我们证明,从线性胁迫性问题中浓缩程序的指数趋近;我们进一步提出两维非线性非线性扩散问题的数字结果,以说明我们提案的许多特点并展示其效力。