We propose a Large Neighborhood Search (LNS) approach utilizing a learned construction heuristic based on neural networks as repair operator to solve the vehicle routing problem with time windows (VRPTW). Our method uses graph neural networks to encode the problem and auto-regressively decodes a solution and is trained with reinforcement learning on the construction task without requiring any labels for supervision. The neural repair operator is combined with a local search routine, heuristic destruction operators and a selection procedure applied to a small population to arrive at a sophisticated solution approach. The key idea is to use the learned model to re-construct the partially destructed solution and to introduce randomness via the destruction heuristics (or the stochastic policy itself) to effectively explore a large neighborhood.
翻译:我们建议采用大型邻里搜索(LNS)方法,使用基于神经网络的建筑学知识超常方法,作为修理操作员,用时间窗口(VRPTW)解决车辆路由问题。 我们的方法是使用图形神经网络,将问题编码,自动递进解码一个解决方案,并经过建筑任务强化学习培训,而不需要任何标签监督。神经修复操作员与当地搜索常规、超常销毁操作员和对少数人口适用的选择程序相结合,以达成一个复杂的解决方案。 关键的想法是使用该知识模型来重新构建部分被破坏的解决方案,并通过销毁超自然学(或随机政策本身)引入随机性,以有效探索大街区。