Future urban transportation concepts include a mixture of ground and air vehicles with varying degrees of autonomy in a congested environment. In such dynamic environments, occupancy maps alone are not sufficient for safe path planning. Safe and efficient transportation requires reasoning about the 3D flow of traffic and properly modeling uncertainty. Several different approaches can be taken for developing 3D velocity maps. This paper explores a Bayesian approach that captures our uncertainty in the map given training data. The approach involves projecting spatial coordinates into a high-dimensional feature space and then applying Bayesian linear regression to make predictions and quantify uncertainty in our estimates. On a collection of air and ground datasets, we demonstrate that this approach is effective and more scalable than several alternative approaches.
翻译:未来城市交通概念包括不同程度自主的地面和空中车辆在拥挤环境中的组合。在这种动态环境中,单靠占用地图不足以进行安全的道路规划。安全和高效的运输需要3D交通流量的推理和适当的模型的不确定性。可以采取几种不同的方法来开发3D速度地图。本文探讨了一种贝叶斯式的方法,该方法捕捉了地图中我们的培训数据中的不确定性。该方法涉及将空间坐标投射到一个高维特征空间,然后利用巴耶斯线性线性回归来作出预测和量化我们的估计数中的不确定性。在收集空气和地面数据集方面,我们证明这一方法比几种替代方法更有效和更可伸缩。