Owing to their remarkable learning (and relearning) capabilities, deep neural networks (DNNs) find use in numerous real-world applications. However, the learning of these data-driven machine learning models is generally as good as the data available to them for training. Hence, training datasets with long-tail distribution pose a challenge for DNNs, since the DNNs trained on them may provide a varying degree of classification performance across different output classes. While the overall bias of such networks is already highlighted in existing works, this work identifies the node bias that leads to a varying sensitivity of the nodes for different output classes. To the best of our knowledge, this is the first work highlighting this unique challenge in DNNs, discussing its probable causes, and providing open challenges for this new research direction. We support our reasoning using an empirical case study of the networks trained on a real-world dataset.
翻译:由于深度神经网络 (DNNs) 具有显著的学习 (和重新学习) 能力,因此它们在许多实际应用中得到了应用。然而,这些数据驱动的机器学习模型的学习通常只有对用于训练的数据可用性良好时才能很好。因此,具有长尾分布的训练数据集对于 DNNs 提出了挑战,因为在不同的输出类别上,对它们进行培训的 DNNs 可能提供不同程度的分类性能。尽管这样的网络的总体偏差已经在现有工作中得到了强调,但本工作鉴别了网络中导致节点对不同输出类别具有不同敏感度的节点偏差。据我们所知,这是首个强调 DNNs 中这一独特挑战的作品,讨论了其可能的原因,并为这个新的研究方向提供了开放性挑战。我们利用一个基于真实数据集的网络的实证案例支撑了我们的推理。