Quantile regression is the task of estimating a specified percentile response, such as the median, from a collection of known covariates. We study quantile regression with rectified linear unit (ReLU) neural networks as the chosen model class. We derive an upper bound on the expected mean squared error of a ReLU network used to estimate any quantile conditional on a set of covariates. This upper bound only depends on the best possible approximation error, the number of layers in the network, and the number of nodes per layer. We further show upper bounds that are tight for two large classes of functions: compositions of H\"older functions and members of a Besov space. These tight bounds imply ReLU networks with quantile regression achieve minimax rates for broad collections of function types. Unlike existing work, the theoretical results hold under minimal assumptions and apply to general error distributions, including heavy-tailed distributions. Empirical simulations on a suite of synthetic response functions demonstrate the theoretical results translate to practical implementations of ReLU networks. Overall, the theoretical and empirical results provide insight into the strong performance of ReLU neural networks for quantile regression across a broad range of function classes and error distributions. All code for this paper is publicly available at https://github.com/tansey/quantile-regression.
翻译:量回归是估算特定百分位反应的任务, 例如从已知的共变数集合中估计中位数。 我们用经修正的线性单元( ReLU) 神经网络作为选择的模型类来研究四分回归。 我们从RELU网络中得出一个预期平均正方形错误的上限, 用于估计任何以一组共变数为条件的量性差。 这一上界值仅取决于最佳近似错误、 网络中层数和每层节点的数量。 我们进一步显示两大类功能( H\"older 函数的构成和Besov 空间的成员) 的上界值。 这些紧界值意味着有定量回归的RELU 网络达到功能类型广泛集合的微方形率。 与现有的工作不同, 理论结果维持在最低假设之下, 并适用于一般错误分布, 包括重压缩分布。 合成响应功能组合的模拟展示理论结果, 转化为RELU 网络的实际实施。 总体而言, 理论和实验结果表明, 具有微调回归值的网络/ 公共级分析功能 。