Real world data often exhibit low-dimensional geometric structures, and can be viewed as samples near a low-dimensional manifold. This paper studies nonparametric regression of H\"{o}lder functions on low-dimensional manifolds using deep ReLU networks. Suppose $n$ training data are sampled from a H\"{o}lder function in $\mathcal{H}^{s,\alpha}$ supported on a $d$-dimensional Riemannian manifold isometrically embedded in $\mathbb{R}^D$, with sub-gaussian noise. A deep ReLU network architecture is designed to estimate the underlying function from the training data. The mean squared error of the empirical estimator is proved to converge in the order of $n^{-\frac{2(s+\alpha)}{2(s+\alpha) + d}}\log^3 n$. This result shows that deep ReLU networks give rise to a fast convergence rate depending on the data intrinsic dimension $d$, which is usually much smaller than the ambient dimension $D$. It therefore demonstrates the adaptivity of deep ReLU networks to low-dimensional geometric structures of data, and partially explains the power of deep ReLU networks in tackling high-dimensional data with low-dimensional geometric structures.


翻译:真实世界数据通常展示低维几何结构, 并且可以被视为低维方块附近的样本。 本文使用深ReLU 网络对低维体上的 H\"{ o}lder 函数的非参数回归进行非参数研究。 假设用$\\\ mathcal{ H ⁇,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\在以美元支持的美元维里曼方块块体元支持的培训数据样本数据样本数据样本, 。 此结果显示, 深海里曼方块内维维维维维维的网络会提高地数据结构。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月15日
Arxiv
0+阅读 · 2021年4月13日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员