Nonlinear phenomena can be analyzed via linear techniques using operator-theoretic approaches. Data-driven method called the extended dynamic mode decomposition (EDMD) and its variants, which approximate the Koopman operator associated with the nonlinear phenomena, have been rapidly developing by incorporating machine learning methods. Neural ordinary differential equations (NODEs), which are a neural network equipped with a continuum of layers, and have high parameter and memory efficiencies, have been proposed. In this paper, we propose an algorithm to perform EDMD using NODEs. NODEs are used to find a parameter-efficient dictionary which provides a good finite-dimensional approximation of the Koopman operator. We show the superiority of the parameter efficiency of the proposed method through numerical experiments.
翻译:非线性现象可以通过使用操作者理论方法的线性技术分析。数据驱动法称为延长动态模式分解(EDMD)及其变体,它们接近与非线性现象相关的库普曼操作员,通过采用机器学习方法迅速发展。神经普通差分方程(NODEs)是一个神经网络,具有连续层,参数和内存效率高。在本文中,我们建议一种算法,用NODEs来进行EDMD。 NODEs用来找到一个具有参数效率的字典,为库普曼操作员提供良好的有限维近距离。我们通过数字实验显示了拟议方法的参数效率的优势。