In this paper, a parallel overlapping domain decomposition preconditioner is proposed to solve the linear system of equations arising from the extended finite element discretization of elastic crack problems. The algorithm partitions the computational mesh into two types of subdomains: the regular subdomains and the crack tip subdomains based on the observation that the crack tips have a significant impact on the convergence of the iterative method while the impact of the crack lines is not that different from those of regular mesh points. The tip subdomains consist of mesh points at crack tips and all neighboring points where the branch enrichment functions are applied. The regular subdomains consist of all other mesh points, including those on the crack lines. To overcome the mismatch between the number of subdomains and the number of processor cores, the proposed method is divided into two steps: solve the crack tip problem and then the regular subdomain problem during each iteration. The proposed method was used to develop a parallel XFEM package which is able to test different types of iterative methods. To achieve good parallel efficiency, additional methods were introduced to reduce communication and to maintain the load balance between processors. Numerical experiments indicate that the proposed method significantly reduces the number of iterations and the total computation time compared to the classical methods. In addition, the method scales up to 8192 processor cores with over 70\% parallel efficiency to solve problems with more than $2\times10^8$ degrees of freedom.


翻译:在本文中, 提出一个平行重叠的域分解先决条件, 以解决由弹性裂缝问题的延长有限元素分解产生的等式线性系统的线性系统。 算法将计算网格分割成两种类型的子域: 常规子域和裂缝尖子域子域, 其依据的观察是, 裂缝对迭接合方法的趋同有重大影响, 而裂缝线的影响与常规网点的影响并不不同。 提示子次域由裂缝点和分支浓缩功能应用的所有相邻点的网状点组成。 常规子域由所有其他网格点组成, 包括裂缝线上的网格点。 为了克服子域数目和进程核心数之间的不匹配, 拟议的方法分为两个步骤: 解决裂隙点问题, 然后是每次断裂线的正常次域问题。 提议的方法是开发一个平行的 XFEM 包, 它可以测试不同类型的迭接方法。 为了实现良好的平行效率, 额外的子网格包括所有其他网格点, 包括裂线上的网格点 。 为了克服子域间间间断径界间数与进程之间的错错错错错,,, 提议的方法可以大大地缩小计算方法到缩缩取。 。 。 。 。 。 将计算法的计算法的计算法的计算方法比平序法 。 。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员