We propose a novel method for high-quality facial texture reconstruction from RGB images using a novel capturing routine based on a single smartphone which we equip with an inexpensive polarization foil. Specifically, we turn the flashlight into a polarized light source and add a polarization filter on top of the camera. Leveraging this setup, we capture the face of a subject with cross-polarized and parallel-polarized light. For each subject, we record two short sequences in a dark environment under flash illumination with different light polarization using the modified smartphone. Based on these observations, we reconstruct an explicit surface mesh of the face using structure from motion. We then exploit the camera and light co-location within a differentiable renderer to optimize the facial textures using an analysis-by-synthesis approach. Our method optimizes for high-resolution normal textures, diffuse albedo, and specular albedo using a coarse-to-fine optimization scheme. We show that the optimized textures can be used in a standard rendering pipeline to synthesize high-quality photo-realistic 3D digital humans in novel environments.
翻译:我们提出一种新方法,从 RGB 图像中进行高质量的面质质质质质质质质重建。 我们使用一种基于单一智能手机的新型捕捉程序,我们用一种廉价的极化极化软质。 具体地说, 我们把手电筒转换成一个极化的光源, 并在摄像头顶部添加一个极化过滤器。 利用这一设置, 我们用交叉极化和平行极化的光来捕捉一个对象的面部面部面部。 对于每个对象, 我们用修改过的智能手机在闪光照射和不同光极化的暗环境中记录两个短片序列。 根据这些观察, 我们用运动结构来重建一个面部清晰的表面网格。 我们然后利用一个可变异的铸造器中的照相机和光合点, 利用一个分析的合成合成面部质素的方法。 我们用一种粗度的到纤维优化的智能环境中的光学3D数字人, 优化了高分辨率正常质质素、 扩散的显性高温和光谱反贝多。 我们显示, 优化的纹质能可以用于一个标准的管道合成的管道。