Environmental variability often has substantial impacts on natural populations and communities through its effects on the performance of individuals. Because organisms' responses to environmental conditions are often nonlinear (e.g., decreasing performance on both sides of an optimal temperature), the mean response is often different from the response in the mean environment. Ye et. al. 2020, proposed testing for the presence of such variance effects on individual or population growth rates by estimating the "Jensen Effect", the difference in average growth rates under varying versus fixed environments, in functional single index models for environmental effects on growth. In this paper, we extend this analysis to effect of environmental variance on reproduction and survival, which have count and binary outcomes. In the standard generalized linear models used to analyze such data the direction of the Jensen Effect is tacitly assumed a priori by the model's link function. Here we extend the methods of Ye et. al. 2020 using a generalized single index model to test whether this assumed direction is contradicted by the data. We show that our test has reasonable power under mild alternatives, but requires sample sizes that are larger than are often available. We demonstrate our methods on a long-term time series of plant ground cover on the Idaho steppe.


翻译:由于生物体对环境条件的反应往往是非线性(例如,最佳温度两侧的性能下降),因此,平均反应往往不同于平均环境的反应。Ye等人,2020年,拟议通过估计“Jensen effector”(Jensen effector),对个人或人口增长率的这种差异性影响进行测试,通过估计“Jensen effect”(Jensen effect)和固定环境中不同环境的平均增长率与固定环境的平均增长率的差异,通过功能性单一指数模型衡量对增长的环境影响。在本文中,我们将这一分析扩大到环境差异对繁殖和生存的影响,这些环境差异有计算和二元结果。在用于分析这些数据的标准通用直线性模型中,Jensen effect(Jensen effect) 的方向被该模型的链接功能默认为前置。在这里,我们使用通用的单一指数模型扩展了Ye et al. 2020年的方法,以测试这一假定的方向是否与数据相矛盾。我们显示我们的试验在较轻的替代品下具有合理的能量,但所需的样本尺寸往往大于可得到的。我们在Idape的长时间系列植物地面覆盖上展示我们的方法。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月13日
Seeing What a GAN Cannot Generate
Arxiv
8+阅读 · 2019年10月24日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员