Global sensitivity analysis is the main quantitative technique for identifying the most influential input variables in a numerical simulation model. In particular when the inputs are independent, Sobol' sensitivity indices attribute a portion of the output of interest variance to each input and all possible interactions in the model, thanks to a functional ANOVA decomposition. On the other hand, moment-independent sensitivity indices focus on the impact of input variables on the whole output distribution instead of the variance only, thus providing complementary insight on the inputs / output relationship. Unfortunately they do not enjoy the nice decomposition property of Sobol' indices and are consequently harder to analyze. In this paper, we introduce two moment-independent indices based on kernel-embeddings of probability distributions and show that the RKHS framework used for their definition makes it possible to exhibit a kernel-based ANOVA decomposition. This is the first time such a desirable property is proved for sensitivity indices apart from Sobol' ones. When the inputs are dependent, we also use these new sensitivity indices as building blocks to design kernel-embedding Shapley effects which generalize the traditional variance-based ones used in sensitivity analysis. Several estimation procedures are discussed and illustrated on test cases with various output types such as categorical variables and probability distributions. All these examples show their potential for enhancing traditional sensitivity analysis with a kernel point of view.


翻译:全球敏感度分析是确定数字模拟模型中最有影响力的投入变量的主要定量技术。 特别是当投入是独立的时, Sobol 敏感指数将一部分利益差异的输出归结于模型中的每一项投入和所有可能的相互作用, 其原因是一个功能的 ANOVA 分解。 另一方面, 时间独立的敏感指数侧重于输入变量对整个产出分布的影响, 而不是仅对差异的影响, 从而提供对投入/产出关系的补充性洞察。 不幸的是, 它们没有享受Sobol 指数的精密分解属性, 因而难以分析。 在本文中, 我们根据概率分布的内核组合, 引入两个暂时独立的指数, 并表明用于定义的 RKHS 框架能够展示出一个基于内核的 ANOVA 分解。 这是首次证明这种可取的属性是不同于Sobol 的敏感度指数。 不幸的是, 我们使用这些新的敏感度指数作为设计内核混合指数的构块。 我们使用两种基于时间点的指数, 依据概率分布的内核分分分法, 展示了传统差异度的敏感度分析方法, 展示了这些基于精确度分析的概率的参数的模型, 展示了这些变量的模型, 展示了各种概率分析, 分析, 展示了各种概率分析。

0
下载
关闭预览

相关内容

最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
62+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员