This paper provides some first steps in developing empirical process theory for functions taking values in a vector space. Our main results provide bounds on the entropy of classes of smooth functions taking values in a Hilbert space, by leveraging theory from differential calculus of vector-valued functions and fractal dimension theory of metric spaces. We demonstrate how these entropy bounds can be used to show the uniform law of large numbers and asymptotic equicontinuity of the function classes, and also apply it to statistical learning theory in which the output space is a Hilbert space. We conclude with a discussion on the extension of Rademacher complexities to vector-valued function classes.
翻译:本文为在矢量空间中获取值的函数开发实验过程理论提供了一些初步步骤。 我们的主要结果为在希尔伯特空间中获取值的光滑功能类别提供了矩阵界限,通过利用矢量价值函数的差别微积分理论和公制空间的分形维度理论来利用这些理论。 我们展示了如何利用这些倍增界限来显示功能类别中数量众多且无症状的不一致性的统一法则,并将它应用到输出空间为希尔伯特空间的统计学习理论中。 我们最后讨论了Rademacher复杂因素向矢量价值函数类别扩展的问题。