Genomic selection (GS) is a technique that plant breeders use to select individuals to mate and produce new generations of species. Allocation of resources is a key factor in GS. At each selection cycle, breeders are facing the choice of budget allocation to make crosses and produce the next generation of breeding parents. Inspired by recent advances in reinforcement learning for AI problems, we develop a reinforcement learning-based algorithm to automatically learn to allocate limited resources across different generations of breeding. We mathematically formulate the problem in the framework of Markov Decision Process (MDP) by defining state and action spaces. To avoid the explosion of the state space, an integer linear program is proposed that quantifies the trade-off between resources and time. Finally, we propose a value function approximation method to estimate the action-value function and then develop a greedy policy improvement technique to find the optimal resources. We demonstrate the effectiveness of the proposed method in enhancing genetic gain using a case study with realistic data.
翻译:基因组选择(GS)是一种技术,植物育种者使用这种技术来选择人来交配和生产新一代物种。资源分配是GS中的一个关键因素。在每一个选择周期,育种者都面临选择预算拨款来交叉和生产下一代育种父母。由于最近针对人工智能问题加强学习的进展,我们开发了一个强化的基于学习的算法,以便自动学会在不同世代育种之间分配有限的资源。我们用数学在马科夫决策程序(MDP)的框架内通过界定状态和行动空间来拟订问题。为了避免国家空间的爆炸,建议了一个整数线性程序,对资源和时间之间的权衡进行量化。最后,我们提出了一个价值函数近似法,用以估计行动价值功能,然后开发一种贪婪的政策改进技术,以找到最佳资源。我们用现实的数据进行案例研究,展示了拟议方法在提高遗传收益方面的有效性。