Among the challenges that the COVID-19 pandemic outbreak revealed is the problem to reduce the number of tests required for identifying the virus carriers in order to contain the viral spread while preserving the tests reliability. To cope with this issue, a prevalence testing paradigm based on group testing and compressive sensing approach or GTCS was examined. In these settings, a non-adaptive group testing algorithm is designed to rule out sure-negative samples. Then, on the reduced problem, a compressive sensing algorithm is applied to decode the positives without requiring any further testing besides the initial test matrix designed for the group testing phase. The result is a single-round non-adaptive group testing - compressive sensing algorithm to identify the positive samples. In this paper, we propose a heuristic random method to construct the test design called $\alpha-$random row design or $\alpha-$RRD. In the $\alpha-$RRD, a random test matrix is constructed such that each test aggregates at most $\alpha$ samples in one group test or pool. The pooled tests are heuristically selected one by one such that samples that were previously selected in the same test are less likely to be aggregated together in a new test. We examined the performance of the $\alpha-$RRD design within the GTCS paradigm for several values of $\alpha$. The experiments were conducted on synthetic data. Our results show that, for some values of $\alpha$, a reduction of up to 10 fold in the tests number can be achieved when $\alpha-$RRD design is applied in the GTCS paradigm.


翻译:COVID-19大流行爆发所揭示的挑战之一是减少为在保持测试可靠性的同时控制病毒传播而确定病毒携带者所需的测试数量,以控制病毒传播者所需的测试数量,以保持测试的可靠性。为了应对这一问题,我们研究了以群体测试和压缩遥感方法或GTCS为基础的流行测试模式。在这些环境下,设计了一个非适应性群体测试算法,以排除确定性偏差的样本。然后,在减少的问题方面,应用压缩感测算法来解译阳性,除了为群体测试阶段设计的初步测试矩阵之外,无需再做任何测试。结果为一回合的非适应性组测试-压缩感测算法以识别阳性样本。在本论文中,我们建议了一种超自然随机方法来构建测试设计设计,称为$-美元行设计或$-alpha-RRD。在美元中,一个随机测试矩阵模型的每个测试总值在最大值为$-al-pha 测试或集合值中,一些混合值测试的基数,在以前测试中,在一次估算性测试中,我们测算的数值的数值中,在一次中,在一次总值中,我们测算的数值中,在一次的数值中,在一次的数值中,在一次中,在一次测试中,在一次的数值中,我们测算的数值中,在一次中,在一次中,可以测算中,在一次中,在一次中,在一次中,在一次的数值中,在一次中,在一次中,我们测算中,在一次中,在一次中,在一次中,可以测算取的数值中,在一次的数值中,在一次的数值中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次测试中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,在一次中,

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员