We propose the homotopic policy mirror descent (HPMD) method for solving discounted, infinite horizon MDPs with finite state and action space, and study its policy convergence. We report three properties that seem to be new in the literature of policy gradient methods: (1) HPMD exhibits global linear convergence of the value optimality gap, and local superlinear convergence of the policy to the set of optimal policies with order $\gamma^{-2}$. The superlinear convergence of the policy takes effect after no more than $\mathcal{O}(\log(1/\Delta^*))$ number of iterations, where $\Delta^*$ is defined via a gap quantity associated with the optimal state-action value function; (2) HPMD also exhibits last-iterate convergence of the policy, with the limiting policy corresponding exactly to the optimal policy with the maximal entropy for every state. No regularization is added to the optimization objective and hence the second observation arises solely as an algorithmic property of the homotopic policy gradient method. (3) For the stochastic HPMD method, we further demonstrate a better than $\mathcal{O}(|\mathcal{S}| |\mathcal{A}| / \epsilon^2)$ sample complexity for small optimality gap $\epsilon$, when assuming a generative model for policy evaluation.
翻译:我们建议采用同质政策镜底法(HPMD)解决具有有限状态和行动空间的折扣、无限地平地 MDP(HPMD)方法,并研究其政策趋同。我们报告在政策梯度方法文献中似乎有三种新的属性:(1) HPMD展示了价值最佳差距的全球线性趋同,以及该政策与一套最佳政策在当地的超线性趋同,以$\gamma ⁇ ⁇ 2美元为主。该政策的超级线性趋同在不超过$\mathcal{O}(\log(1/\Delta ⁇ ))美元(美元)的迭代数之后生效,其中,$\Delta ⁇ $($Delta ⁇ )在与最佳状态行动价值功能相关的数量上似乎具有新意;(2) HPMDMD还展示了该政策的最后一率趋同,该政策与最佳政策完全对应,以$gamma{____________BAR_O}最佳政策。没有在优化目标目标上,因此仅作为同质政策梯度梯度梯度梯度梯度方法的算属性属性属性属性属性属性属性属性属性属性属性属性。(3)。我们进一步展示了美元的精度政策,因此,在假设的精度上,当______________________________________________________________________________________________________________________________________________________________________________________________________________________________