We introduce Voevodsky's univalent foundations and univalent mathematics, and explain how to develop them with the computer system Agda, which is based on Martin-L\"of type theory. Agda allows us to write mathematical definitions, constructions, theorems and proofs, for example in number theory, analysis, group theory, topology, category theory or programming language theory, checking them for logical and mathematical correctness. Agda is a constructive mathematical system by default, which amounts to saying that it can also be considered as a programming language for manipulating mathematical objects. But we can assume the axiom of choice or the principle of excluded middle for pieces of mathematics that require them, at the cost of losing the implicit programming-language character of the system. For a fully constructive development of univalent mathematics in Agda, we would need to use its new cubical flavour, and we hope these notes provide a base for researchers interested in learning cubical type theory and cubical Agda as the next step. Compared to most expositions of the subject, we work with explicit universe levels.


翻译:我们引入了Voevodsky的单体基础和单体数学, 并解释如何用基于 Martin- L\\" 类型理论 的计算机系统 Agda 来开发这些基础。 Agda 允许我们写数学定义、 构造、 理论和证明, 比如数字理论、 分析、 集体理论、 地形学、 分类理论或编程语言理论, 检查它们的逻辑和数学正确性。 Agda 是一个建设性的数学系统, 默认地说它也可以被视作一种用于操控数学对象的编程语言。 但是我们可以以失去系统隐含的编程语言特性为代价, 假设数学作品的选择轴或排除原则。 为了充分建设性地发展Agda 的单体数学, 我们需要使用它的新立体口味, 我们希望这些笔记能为有兴趣学习立体类型理论和立体阿格达 的研究人员提供一个基础, 作为下一步的学习基础。 与大多数实验对象相比, 我们以明确的宇宙水平工作 。

0
下载
关闭预览

相关内容

数学是关于数量、结构、变化等主题的探索。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年10月17日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员