Multi-robot decision-making is the process where multiple robots coordinate actions. In this paper, we aim for scalable and reliable multi-robot decision-making despite the robots' limited on-board resources and the resource-demanding complexity of their tasks. We introduce the first algorithm that enables robots to choose with which other robots to coordinate, balancing the trade-off of centralized vs decentralized coordination. Particularly, centralization favors globally near-optimal decision-making but at the cost of increased on-board resource requirements; whereas, decentralization favors minimal resource requirements but at a global suboptimality cost. All robots can thus afford our algorithm, irrespective of their resources. We are motivated by the future of autonomy that involves multiple robots coordinating actions to complete resource-demanding tasks, such as target tracking and area covering. To provide closed-form characterizations, we focus on maximization problems involving monotone and "doubly" submodular functions. To capture the cost of decentralization, we introduce the notion of Centralization Of Information among non-Neighbors (COIN). We validate our algorithm in simulated scenarios of image covering.


翻译:多机器人决策是多个机器人协调行动的过程。 在本文中,我们的目标是,尽管机器人在机上资源有限,而且任务要求很复杂,但仍进行可扩缩和可靠的多机器人决策。我们引入了第一个算法,使机器人能够选择与哪些其他机器人协调,平衡集中式与分散式协调的权衡。特别是,集中化有利于全球接近最佳的决策,但成本却增加了机上的资源需求;而分散化有利于最低的资源需求,但费用却低于全球。因此,所有机器人都能够负担得起我们的算法,而不管他们的资源如何。我们受到自主权的未来的驱动,它涉及多个机器人协调行动以完成资源需求任务,例如目标跟踪和覆盖的领域。为了提供封闭式的特征描述,我们把重点放在与单体和“摇晃动式”子功能有关的最大化问题上。为了了解分散化的成本,我们引入了非维里博托尔(COIN)中间信息集中化的概念。我们验证了我们模拟图像情景的算法。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月17日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员