We consider functional linear regression models where functional outcomes are associated with scalar predictors by coefficient functions with shape constraints, such as monotonicity and convexity, that apply to sub-domains of interest. To validate the partial shape constraints, we propose testing a composite hypothesis of linear functional constraints on regression coefficients. Our approach employs kernel- and spline-based methods within a unified inferential framework, evaluating the statistical significance of the hypothesis by measuring an $L^2$-distance between constrained and unconstrained model fits. In the theoretical study of large-sample analysis under mild conditions, we show that both methods achieve the standard rate of convergence observed in the nonparametric estimation literature. Through numerical experiments of finite-sample analysis, we demonstrate that the type I error rate keeps the significance level as specified across various scenarios and that the power increases with sample size, confirming the consistency of the test procedure under both estimation methods. Our theoretical and numerical results provide researchers the flexibility to choose a method based on computational preference. The practicality of partial shape-constrained inference is illustrated by two data applications: one involving clinical trials of NeuroBloc in type A-resistant cervical dystonia and the other with the National Institute of Mental Health Schizophrenia Study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员